D-boundedness and D-compactness in finite dimensional probabilistic normed spaces

نویسندگان

  • REZA SAADATI
  • MASSOUD AMINI
  • Reza Saadati
  • Massoud Amini
چکیده

In this paper, we prove that in a finite dimensional probabilistic normed space, every two probabilistic norms are equivalent and we study the notion of Dcompactness and D-boundedness in probabilistic normed spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME RESULTS ON INTUITIONISTIC FUZZY SPACES

In this paper we define intuitionistic fuzzy metric and normedspaces. We first consider finite dimensional intuitionistic fuzzy normed spacesand prove several theorems about completeness, compactness and weak convergencein these spaces. In section 3 we define the intuitionistic fuzzy quotientnorm and study completeness and review some fundamental theorems. Finally,we consider some properties of...

متن کامل

F eb 2 00 5 SOME RESULTS IN GENERALIZED ŠERSTNEV SPACES

In this paper, we show that D-compactness in GeneralizedŠerstnev spaces implies D-boundedness and as in the classical case, a D-bounded and closed subset of a characteristic GeneralizedŠerstnev is not D-compact in general. Finally, in the finite dimensional GeneralizedŠerstnev spaces a subset is D-compact if and only if is D-bounded and closed.

متن کامل

ar X iv : m at h / 05 02 05 3 v 3 [ m at h . G N ] 2 5 Fe b 20 05 SOME RESULTS IN GENERALIZED ŠERSTNEV SPACES

In this paper, we show that D-compactness in GeneralizedŠerstnev spaces implies D-boundedness and as in the classical case, a D-bounded and closed subset of a characteristic GeneralizedŠerstnev is not D-compact in general. Finally, in the finite dimensional GeneralizedŠerstnev spaces a subset is D-compact if and only if it is D-bounded and closed.

متن کامل

ar X iv : m at h / 05 02 05 3 v 2 [ m at h . G N ] 2 3 Fe b 20 05 SOME RESULTS IN GENERALIZED ŠERSTNEV SPACES

In this paper, we show that D-compactness in GeneralizedŠerstnev spaces implies D-boundedness and as in the classical case, a D-bounded and closed subset of a characteristic GeneralizedŠerstnev is not D-compact in general. Finally, in the finite dimensional GeneralizedŠerstnev spaces a subset is D-compact if and only if is D-bounded and closed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005